Fast learning method for back-propagation neural network by evolutionary adaptation of learning rates
نویسندگان
چکیده
In training a back-propagation neural network, the learning speed of the network is greatly affected by its learning rate. None, however, has offered a deterministic method for selecting the optimal learning rate. Some researchers have tried to find the sub-optimal learning rates using various techniques at each training step. This paper proposes a new method for selecting the sub-optimal learning rates by an evolutionary adaptation of learning rates for each layer at every training step. Simulation results show that the learning speed achieved by our method is superior to that of other adaptive selection methods.
منابع مشابه
Learning Curve Consideration in Makespan Computation Using Artificial Neural Network Approach
This paper presents an alternative method using artificial neural network (ANN) to develop a scheduling scheme which is used to determine the makespan or cycle time of a group of jobs going through a series of stages or workstations. The common conventional method uses mathematical programming techniques and presented in Gantt charts forms. The contribution of this paper is in three fold. First...
متن کاملUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملCombinations of Gradient and Evolutionary Methods for Neural Network Weights Adaptation
In this paper, the use of evolutionary computation for feedforward neural network learning is discussed. The aim is to combine benefits of evolutionary and gradient learning into two methods: BP/ES and ES/LMS. We compared experimental results obtained on XOR data by back-propagation algorithm, evolution strategies, and combined approach.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 11 شماره
صفحات -
تاریخ انتشار 1996